Complex-valued neural networks for nonlinear complex principal component analysis
نویسندگان
چکیده
Principal component analysis (PCA) has been generalized to complex principal component analysis (CPCA), which has been widely applied to complex-valued data, two-dimensional vector fields, and complexified real data through the Hilbert transform. Nonlinear PCA (NLPCA) can also be performed using auto-associative feed-forward neural network (NN) models, which allows the extraction of nonlinear features in the data set. This paper introduces a nonlinear complex PCA (NLCPCA) method, which allows nonlinear feature extraction and dimension reduction in complex-valued data sets. The NLCPCA uses the architecture of the NLPCA network, but with complex variables (including complex weight and bias parameters). The application of NLCPCA on test problems confirms its ability to extract nonlinear features missed by the CPCA. For similar number of model parameters, the NLCPCA captures more variance of a data set than the alternative real approach (i.e. replacing each complex variable by two real variables and applying NLPCA). The NLCPCA is also used to perform nonlinear Hilbert PCA (NLHPCA) on complexified real data. The NLHPCA applied to the tropical Pacific sea surface temperatures extracts the El Niño-Southern Oscillation signal better than the linear Hilbert PCA.
منابع مشابه
Nonlinear Complex-Valued Extensions of Hebbian Learning: An Essay
The Hebbian paradigm is perhaps the best-known unsupervised learning theory in connectionism. It has inspired wide research activity in the artificial neural network field because it embodies some interesting properties such as locality and the capability of being applicable to the basic weight-and-sum structure of neuron models. The plain Hebbian principle, however, also presents some inherent...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملNonlinear complex principal component analysis of the tropical Pacific interannual wind variability
Complex principal component analysis (CPCA) is a linear multivariate technique commonly applied to complex variables or 2-dimensional vector fields such as winds or currents. A new nonlinear CPCA (NLCPCA) method has been developed via complex-valued neural networks. NLCPCA is applied to the tropical Pacific wind field to study the interannual variability. Compared to the CPCA mode 1, the NLCPCA...
متن کاملA Complex-Valued RTRL Algorithm for Recurrent Neural Networks
A complex-valued real-time recurrent learning (CRTRL) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. The proposed CRTRL is derived for a general complex activation function of a neuron, which makes it suitable for nonlinear adaptive filtering of complex-valued nonlinear and nonstationary signals and complex signals with...
متن کاملCoupled coincidence point and common coupled fixed point theorems in complex valued metric spaces
In this paper, we introduce the concept of a w-compatible mappings and utilize the same to discuss the ideas of coupled coincidence point and coupled point of coincidence for nonlinear contractive mappings in the context of complex valued metric spaces besides proving existence theorems which are following by corresponding unique coupled common fixed point theorems for such mappings. Some illus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2005